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Flow dichroism in critical colloidal fluids
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Due to long-range correlations and slow dynamics of concentration fluctuations in the vicinity of the
gas-liquid critical point, shear flow is very effective in distorting the microstructure of near-critical fluids. The
anisotropic nature of the shear-field renders the microstructure highly anisotropic, leading to dichroism. Ex-
periments on the dichroic behavior can thus be used to test theoretical predictions on microstructural order
under shear flow conditions. We performed both static and dynamic dichroism and turbidity measurements on
a colloid-polymer mixture, existing of silica spher@adius 51 nmand polydimethylsiloxane polymémolar
weight 204 kg/mol. Sufficiently far away from the critical point, in the mean-field region, the experimental
data are in good agreement with theory. Very close to the critical point, beyond mean field, for which no theory
exists yet, an unexpected decrease of dichroism on approach of the critical point is observed. Moreover, we do
not observe critical slowing down of shear-induced dichroism, right up to the critical point, in contrast to the
turbidity.
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[. INTRODUCTION Moreover, due to critical slowing down, one observes very
slow relaxation of the turbidity after cessation of the shear
Critical phenomena have been studied for a long time, anflow.
the critical behavior of various quantities is well understood. Due to the anisotropic nature of the microstructure under
The main interest has been to understand the difference behear flow, besides a change of the turbidity, dichroism is
tween the values of critical exponents in the mean-field reinduced by the shear flow, that is, the turbidity will depend
gion and very close to the critical point. Very little is known on the polarization state of the incident light. Measurement
about the effects of external fields on critical behavior andof shear induced dichroism, resulting from scattering by the
the critical behavior of properties that are induced by exteranisotropic microstructure, is a sensitive test for the theoreti-
nal fields. In particular, nonconservative external fields,cally predicted microstructure under shear flow. This paper
which cannot be described in terms of a Hamiltonian or gpresents experimental data on shear induced dichroism as a
free energy, do not allow for the well-known thermodynamicfunction of shear rate and the distance from the critical point.
approaches that led to the current knowledge of critical pheAs far as we know, this is the first systematic investigation of
nomena. Shear flow is an example of such a nonconservativghear induced dichroism near the gas-liquid critical point. In
external field. The critical behavior of systems in such non-Ref.[1], a single measurement of dichroism in a near-critical
conservative external fields must be studied on the basis dfinary fluid is briefly discussed.
kinetic equations. The most fundamental kinetic equation is The present study is aimed at the understanding of the
the equation of motion for the probability density function of critical behavior of dichroism in systems under shear flow,
phase-space variables. In principle, equations of motion foon the basis of the solution of the fundamental equation of
macroscopic variables can be derived from this fundamentahotion referred to above. The relevant probability density
kinetic equation, which then allows for the prediction of their function is the pair-distribution function, the Fourier trans-
critical behavior. Alternatively, the measurement of the criti-form of which is the structure factor. There are a number of
cal behavior of a macroscopic quantity can be used to test theoretical approaches to obtain an expression for the pair-
theoretical prediction for the probability density function un- distribution function for systems under shear fIf2+6]. In
der shear flow conditions. this paper we concentrate on an expression for the structure
On approach of the gas-liquid critical point, interactionsfactor that is believed to be valid for colloidal systems con-
become very long ranged. This leads, for example, to theisting of spherical particles close to their gas-liquid critical
divergence of the turbidity. In addition, the gradient diffu- point. This theoretical prediction is a mean-field regu9].
sion coefficient tends to zero so that the dynamics of théNo theory exists yet that is valid beyond mean field.
system severely slows down, often referred to as critical Experimentally, we find that the shear induced dichroism
slowing down. Due to the long-ranged spatial correlationsncreases on approach of the critical point, in accordance
and their very slow dynamics, the microstructural order neawith mean-field predictions, but unexpectedly decreases
the gas-liquid critical point is very sensitive to shear flow. again on very close approach of the critical point. Moreover,
For very small shear rates, the turbidity can go down enorwe find no critical slowing down of the relaxation dynamics
mously, changing the sample from being white to almostof dichroism after cessation of shear flow, right up to the
transparent. This change in turbidity is directly related to thecritical point. This is in sharp contrast with the turbidity,
change of the microstructure due to the applied shear fieldvhich diverges on approach of the critical point, and for

1063-651X/2001/6@)/06140112)/$20.00 63061401-1 ©2001 The American Physical Society



T. A. J. LENSTRA AND J. K. G. DHONT PHYSICAL REVIEW B3 061401

intensity | ¢ after passing the sample, and the incident inten-
sity 1, are connected by Lambert-Beer’s law,

lo=1oexp{— 7l}. )

Since the intensity loss is solely due to the scattering of light

by the colloidal particles, there is a relation between the tur-

bidity 7 and the integrated scattered intensity, which in turn
FIG. 1. Geometry used in the theoretical discussion and experilS proportional toP(k)S(k) with P(k) the formfactor and

mental setup. S(k) the structure factor. This relation readee Ref[7] for

the derivation of this equation

gap of Couette cell

which relaxation is severely slowed down.

The colloidal system used is a mixture of spherical col- _ &
loidal particles and polymers, dissolved in cyclohexane. The ™ kg 0
added polymer induces attractions, commonly referred to as
“depletion attractions”[10—12, which give rise to a gas-
liquid critical point[13].

This paper is organized as follows. Section Il provides the
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theoretical background that is necessary to understand the +(cosa cose+ sinasing)
data interpretation. In Sec. Ill the colloidal system is dis- 2 4
. . k 1/k
cussed together with the experimental setup that was used to X{1=|—| +=|— , 3
measure dichroism. In Sec. IV the experimental results and Ko 41ko

comparison with theoretical predictions are presented. Sec-h th tical tad. | 't
tion V contains some concluding remarks. where the optical constaii, Is equal to,
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Il. THEORETICAL BACKGROUND C,= o ’ ,
This section contains the necessary theoretical back-

ground for the data interpretation that is used in the experiwith ko=27/\ ., (\way is the wavelength of the light in the

mental section. First of all, the relation between the correladispersiof, p the colloidal particle number density,, the

tion length and the turbidity of a quiescent, unsheared systeryolume of a colloidal particleg, the volume averaged di-

is discussed. This relation will be used in experiments tcglectric constant of the colloidal particles, andthe dielec-

determine the distance from the critical point in terms of thetric constant of the fluid. The wave-vectdr is equal to

correlation length by means of turbidity measurements. Sec= Ko(Sin 6,cose,sindsing,cosf—1). The magnitude= k|

ond, the shear distorted stationary structure factor undedf the wave vector is equal tokgsin6/2, in which 6 is the

shear flow is discussed, and the shear induced dichroism wi#ingle betweetk and thez axis. In the integration in Eq3)

be expressed as a wave-vector integral over this structunith respect to the spherical coordinatesind 6, the 6 inte-

factor. This leads to a scaling relation that will be testedgration is transformed t& integration.

experimentally in Sec. IV. Third, the relaxation dynamics of In case the structure factor is isotropic, that is, wisék)

the turbidity and shear induced dichroism, after cessation df a function of the magnitude= k| only, the ¢ integration

the shear flow, is addressed. in Eq. (3) can be done analytically, rendering the turbidity

The flow that we will consider here is chosen in thdirec-  independent ofx. For such isotropic structures there is no

tion, with its gradient in thez direction. That is, the flow polarization dependence of the turbidity. Shear flow renders

velocity is equal tau=T"-r, wherel  is the velocity gradient the structure factor anisotropic, leading to ardependent

tensor, turbidity. Shear flow thus induces dichroism through its ef-
fect on the microstructure of the suspension of spherical col-
loidal particles. For nonspherical colloidal particles there is
an additional contribution to dichroism that stems from the

' (1) orientation dependence of the form factor. In the present pa-
per, where spherical colloids are used, such alignment di-
chroism is absent.

with 7y the shear rate. The direction of the incident laser

beam is along the direction, and the polarization state of the B. Relation between turbidity and correlation length

light is specified by the angle of the electric field with the

X axis. This geometry is sketched in Fig. 1.

0 O
r=y0 0
0 0

The relevance of the relation between the turbiditgnd
the correlation lengtlg for the work described in the present
paper is that when a dichroism measurement has been done,
the correlation length is obtained through a turbidity mea-
The turbidity measures the loss of intensity as a lightsurement on the quiescent, nonsheared suspension. Once the
beam passes the sample. The sample thickheie light relation between the turbidity and the correlation length is

A. Relation between scattered intensity and turbidity
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established, such a turbidity measurement suffices to charaa-straight line with a slope equal g and an intercept equal
terize the distance from the critical point in terms of theto B3¢ 2. The ratio of the intercept and slope thus equals
correlation length, which is also an important input whenthe squared reciprocal correlation length. As mentioned
comparing with theory. above, the Ornstein-Zernike structure factor accounts only

The structure factor for a nonsheared, equilibrium susperfor the critical contribution to the structure factor. In experi-
sion near the critical point is the Ornstein-Zernike structuremental practice, we shall have to subtract a constant, wave
factor, vector independent background intensity.

1 &

S k)= ,8_2 m 4 C. Critical microstructure under shear flow

) ) The shear induced turbidity and dichroism can be ob-
where=1/kgT (kg is the Boltzmann constant afidis the  tained from Eq(3) once the structure factor under shear flow
temperaturg andX. is a constant related to the Cahn-Hilliard js known. Concentration and shear rate-dependent turbidity
square-gradient coefficient. Furthermoges the correlation  and dichroism measurements actually serve as a tool to test
length, which measures the largest distance over which pagneoretical predictions for the structure factor under shear
ticles are correlated. Equatidd) is a valid expression for  fioy, Notable theoretical predictions for the shear rate depen-
the structure factor for small wave vectors<2m/Ry,  dence of the structure factor can be found in REEs-6].
whereRy is the range of the pair-interaction potential. For Here we discuss a theory that is specialized to colloidal sys-
such small wave vectors, the form factor in E8) for the  tems close to their gas-liquid critical poifit—J].
turbidity is almost equal to one. Correction terms can be  starting point is the Smoluchowski equation, which is the
obtained by the Taylor expansion of the form factor of opti-fundamental kinetic equation referred to in the introduction.
cally homogeneous colloidal spheres, This is the equation of motion for the probability density
function of the position coordinates of the colloidal particles.

P 2
P(k)=|3 sin(ka) —kacoska) *_ 1- E(ka)2+ i(ka)“ From this kinetic equation, one obtains the following equa-
(ka)® 5 175 tion of motion for the structure factor under stationary shear
+0((ka)®), ®) flow (for the geometry sketched in Fig),1
d Jd
Substitution of Eqs(4) and(5) into Eq. (3) for the turbidity e 'ykzm}S(k;tl y)=— 2Dk K[ S(k;t| ¥) — SYK)].
gives, ’ (7
. 20%+20+1 (1+o) Note that in directions wherk,=0, this equation predicts
o) pc In(1+20) -2 P that there is no effect of the shear flow on the microstructure.
Here,D® is an effective diffusion coefficient which is equal
to,
2, ,120%+20+1
+-a%k2 | —————In(1+20)
° y Deff(k)=D al + kZE) (8)
8 2 - Oﬁ d? il
§0’ +20+2
~ | +oak)" |, (®)

with D, the Stokes-Einstein diffusion coefficient of a nonin-
teracting, free colloidal particld] is the osmotic pressure
where o=2(ko¢)?. This equation has been derived by (of which the derivative with respect to the number derigity
Puglielli and Ford 14]. is taken, and3 is a constant that is related to the Cahn-
The Ornstein-Zernike structure facfdq. (4)] is the con-  Hilliard square gradient coefficiefthe same constant occurs
tribution to the structure factor due to critical, long-rangejn Eq. (4) for the Orstein-Zernike structure facloiThe sta-
correlations only, and does not contain the noncritical CONtionary solutionS(k|¥) of this equation of motion is conve-

tributions to the scattered intensity. For the small wave vecnijently expressed in terms of the relative structure factor de-
tors of interest here, this noncritical background is virtually aformation,

constant, not only independent of the wave vector, but also

independent of the concentration within the vicinity of the

critical point. This leads to a noncritical additive, constant S(k|y) —S*4k)

contribution to the turbidity in Eq(6). W(kln) = T Sqk)-1 ©
Alternatively, the correlation length can be measured

from small-angle light-scattering experiments using Ej.

for the structure factor. Since the scattered intensity is diAs will become clear later in this subsection, this quantity is

rectly proportional to the structure factor at sufficiently smallwell behaved for all wave vectors right up to the critical

angles, this equation shows that a plot d(k) versusk® is  point. From Eq.(7) one finds,
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1 +o The result in Eq(10) is valid only in the mean-field re-
W(kIn)= K dX(K?=K3+X?) (K5~ X?) gion around the critical point. This is due to a linearization of
27K equations of motion with respect to the total-correlation

F(K|X) function h(r) for large distances between two colloidal
p(— AK, ) (10) particles. In fact, terms-h? are neglected against the term

(BdIl/dp)h for large distances. This is only a valid pro-
where the dimensionless wave-vector=ké is introduced cedure wherBdll/dp is not extremely small, that is, when

and, the distance to the critical point is not too small. The above
) 5 predictions are therefore only valid in the mean-field region.
F(K[X)=(X—K3)(K?=K$)(1+K*~K3) In the derivation of Eq(10), hydrodynamic interactions

between colloidal particles have been neglected. Further-
more, a closure relation has been used in order to express the
Here, K; is the jth component of the dimensionless Wavethree-pgrhcle cqrrelatlon funchop in terms of the'pa|r.-
vector. The upper integration limit in EGL0) is + when correlation function. This approximate closure relation is
\K,>0 and—o when\K,<0. Furthermore) is a dressed reminiscent of the classic super-position closure relation.

+1(XP=K3)(1+2K2-2KH+ L(X3—K3). (1))

Peclet number, .I.t can pe shown rigorously, th_at the displacement of the
critical point for colloidal systems is proportional to (p¥,
&2 1 v wherey=1.23 is the critical exponent of the compressibility
—_— ‘y —_— 7 . . e
A= 2D°(k=0) _ [3_2 2D, (12 of the quiescent systefi5]. The displacement of the critical

point for spherical colloids is related to the distortion of the

In the second equation in Eq12) we used thaté pair-correlation function for short distances, smaller than the
= /2/[dII/dp]. Note that close to the critical poinil/dp  range of the pair-interaction potential, and is therefore a
is small, so thaD®" is small in comparison to the free dif- function of the bare Peclet number®P&or the experiments
fusion coefficientD, for small wave vectors. This reflects described here, P&0.08, so that the displacement of the
the critical slowing down of long wavelength concentrationcritical point is not important for the present work.
fluctuations. Numerical results for the relative structure factor distor-

The dressed Peclet numbgrin Eq. (12) measures the tion and the structure factor itself are plotted in Fig. 2. In
effect of shear flow on the long-ranged, critical microstruc-some directions there is enhancement of the structure,
tural order. When\ <1, the critical microstructural order is whereas in other directions, destruction of the structure is
only slightly affected, while forn>1, the effect of shear observed, as can be seen from the plotsPofThis can be
flow is Signiﬁcant. What is neglected in the derivation of Eq understood by decomposing a Simp|e Shear ﬂOW in its e|0n_
(10), is distortion of microstructural order extending over gational and rotational contributions. The elongational con-
distances equal or less than the ranigg of the pair-  yipytion tends to enhance structure along yhe—z direc-
interaction potential. The extent to which such short-rangeqion, and diminishes structure in the direction whgrez.

microstructural order is affected by shear flow is measureq-hese directions correspond to the directiéns — ks and

by the so-called bare Peclet number, k,=Kj3, respectively. Note tha¥’ is found to be finite right

- 52 up to the critical point, which is the reason for introducing
YRV . .

PP=_——. (13)  this quantity.
2Dy

Equation(10) is valid whenever Pe<1. Since&é>R, and

Df<D,, the dressed Peclet number can be large, also for

small bare Peclet numbers. This is due to the fact that large The change of the turbidity on applying a shear flow fol-

structures are more easily affected by shear flow than smalows from Egs.(3), (4), (9), and (10). Transforming to the

structures, and that long wavelength critical fluctuations arelimensionlessK=k¢ variable, and disregarding the small

much slower than density fluctuations with small wave-(K/Ky)* terms in Eq.(3), the turbidity, relative to the tur-

lengths ~-Ry). One can thus distinguish three shear ratebidity for a= /2, is found to be equal to,

regimes,

D. Shear induced dichroism

Ar(y|la)=7(¥|a)— 7(¥|a=3%)
A<1: P@<1 weak shear flow,

C 1
T JPe(7)
A>1; Pé<1 strong shear flow, (KoRy)* (B2/RY)%"? 7
A>1; Pd<1 very strong shear flow. X[cos'(@)DedM) +2 sin(a) cog @) Dsd )],
(14)

Equation(10) for the structure factor distortion is valid in the
weak and strong shear regime, but not in the very strong
shear regime. where the scaling functiond,. andD . are given by,
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FIG. 2. Plots of(minug the relative structure factor distortioh(k|\) and the structure fact®(k|y), atK,=0 (a) andK3;=0, (b) for
various values ok as indicated in the figur&,;, K,, andK; values range from-3 to +3. The minimum and maximum values ¥f are
indicated in the figure.

1 (2= w0 K3 limit of typically K~5. For the same reasoW, is replaced
DedN)= Tf d(pf dKW\P*(K,ch\) here byW*, which is equal toV with the angle of k with
A Jo 0 the z axis taken into account to leading order, that is,
X(coS ¢—sirt ¢) = W* (K, o]\) =W (K=K(cose, sine,0)[\).  (17)
and,
Numerical evaluation of the scaling functions reveals that
1 (2= o K3 for the present geometrisee Fig. 1 D=0, to within nu-
DsdM)= Kfo d@fo dK Tz W (KogN) merical errors. Numerical results for the scaling functions are
plotted in Fig. 3. Here, the curves labeled with a “1” refer to
X sin(¢)cog ¢). (16)  the geometry where the direction of the beam is along the

vorticity direction, while “2” refers to the geometry

The upper integration limit 2, in Eq. (3) is replaced here sketched in Fig. 1. The reason for division ki in Egs.
by cc. This can be done for systems under shear flow, wher€l5) and (16) is that numerical evaluation of the scaling
the structure factor distortion exhibits a peak at small valuegunctions indicates that these now tend to a constant for large
of K, and tends to O for large wave vectors much faster thanlressed Peclet numbexs
1/K? (except in directions wheré,~0) as can be seen from In the weak shear limit, whera <1, for the geometry
the plots ofS(k|¥) in Fig. 2. In fact, numerical evaluation of “2” of interest here,D.. can be found by substitution of a
the integrals in Eqs(15) and (16) shows that the integrals regular expansion of the structure factor with respeat 6o
converge to within a fraction of 1% for an upper integrationthis end the expansion,
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0.6 . pansion Eq(18) does make sense, however, when used in

integrals like in Eqs(15) and(16) for the scaling functions,
(a) 1 since the width of the boundary layer vanishes for small
shear rates, and therefore contributes only little to the value
of the integral. In addition, the integrand in Ed45) and
(16) vanishes for zero wave vectors, so that the error that is
made by using the regular expansion is further diminished.
1 The maximum variation of the turbidity on variation af
multiplied by \ /27 defines the dichroismMn”. From Eq.
(14), we thus finally find the following expression for the
shear induced dichroism for the geometry “2” near the gas-
liquid critical point,

0.0
0'08.0 010 1

: ' ' C. 1 VPE(5
0% 400 5 800 An'= ()

~ (koRW* (BEIRYTZ ko

DedM). (19

0.8 T
This result predicts scaling in the sense that dichroism de-
(b) 1 pends on the shear rate and the distance from the critical
Dsc ] point only through the dressed Peclet numheexcept for

the trivial prefactor\/P@('y). This scaling implies that ex-
perimental data foAn”/+/y taken at various shear rates and
distances from the critical point should collapse onto a single
0.4 1 master curve when plotted versgg*, the form of which
012 03 master curve is given by the scaling function in Figa)3
(geometry “2").

E. Time-dependent turbidity and dichroism

0985 0.1 %9 1

Consider an experiment where a stationary shear flow is
0.0 - . ; suddenly switched off, at time=0, say. The solution of Eq.
0 400 800 L S . . . .
A (7) for this situation is a single exponential function of time,

FIG. 3. Numerical results for the scaling functiobs, (a) and el 2 2 yt
D (b). The insets show the behavior for small values\pfvhich S(Kst| ) =[S(K) — 1]W (K[ )exg —KT1+K ]T :
confirms the analytically predicted behavior as discussed in the (20)
main text, below Eq(18).

S(K[%)=SHK)+ASP(K)+A2SP(K)+..., (18)  where the structure fact@(k|y) in Eq.(9) for ¥ is now the
structure factor in the stationary state, before cessation of the

is substituted into the stationary form of E(). Equating flow. The dimensionless variables as defined in subsection C
terms of equal powers in reveals that, for the geometry are introduced here. The time dependent behavior of the tur-
sketched in Fig. 1S ~sing andS®®~cog ¢. The g inte-  bidity is immediately found by substitution of ER0) into
gration in Eq.(15) for D renders the linear term inequal  Eq. (3), neglecting terms of ordeK(/K)?,
to 0, so that,D.~\%¥2 Dichroism thus varies likey? for
small dressed Peclet numbers. The shear induced dichroism

in the present geometry is thus inherently nonlinear. The . eq_ C. 1
small shear rate behavior Bf.. is plotted in the inset of Fig. (Y[ — 7%=~ (koRy)* (BX/R2)%2
3(@). Thel)‘zunctionDsc, relevant for the geometry “1,” var-
ies like A< for small\. In the “1” geometry, there is thus a 2m * K
nonzero linear response. Note the very small rangefn X fo dgoJ; dK 1+ KZW*(K'QDP‘)
Fig. 3 where the leadiny dependence is dominant.
The regular expansion E@18) is invalid in a region in ) , M
wave-vector space arourikd=0 of width ~+/\, even for xexp —Ko(1+K )T : (22)

small values ofA. The reason is that Ed7) is singularly

perturbed by the shear flow contribution. In this so-called

(mathematical boundary layer ak=0 there is never linear Similarly, as in subsection D, the polarization dependence of
shear flow response of the structure factor. The regular exhe turbidity is given by,
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Ar(lalty=r(¥alt) = 7(3la=5]t) N
CT 1 . 10_ -
=— JPé
(koRy)® (BEIRG T\ 7Y _
. E 8 i
X[coF(a)Ded M) g ] critical point
+2sina)cog@)DeA|W)], (22 L6 " 1
o
[a
where 0 4- ]
g .
, 1 (2= * K3 , 2. i
Ded M) = Kfo d¢f0 dKW(C°§¢_S'n2 ¢) { . dilution lines
0 - T M T T T T T T T
yt 0 5 10 15 20 25 30 35
XW* (K, ¢l )\)eXF( —Kq1+K?] _) (23 volume fraction silica spheres [%]
' A
FIG. 4. Experimental phase diagramolymer to colloid diam-
and, eter ratio 0.5L The binodal point§] are obtained by visual obser-
vation.
Lo e K3
Dsd N [yt) = K fo d‘Pfo dK—1+ K2 sin(¢) cog ¢) prepared. By adding or evaporating solvent, we moved along

so-called dilution lines in the phase diagram, as depicted in

yt Fig. 4. The binodal was found by visual inspection of the

X‘I’*(KJPP\)GXF{ —KZ[1+Kk?] T)' (24 samples for the formation of an interface and the time it
takes before an interface could be seen. Close to the critical

Numerical evaluation of Eqg23) and (24) leads to a pro- point, phase §ep§ration could take a few hours dge t_o the fact
nounced difference in relaxation times for the turbidity andthat the density difference between the gas and liquid phases
dichroism after cessation of the shear flow. Dichroism re&comes very small. The experimentally determined phase
laxes fast in comparison to the turbidity. Formally, this is diagram is shown in Fig. 4. The critical point was found by
due to the factoK? in the integrand in Eq€23) and(24) for Ipcatlng the point on the binodal where, after phase separa-
the dichroism, as compared to the fadtoin Eq. (21) for the t|0_p, the vplumes of the two phases are equal. Close to the
turbidity. The dynamics of dichroism is connected to largercritical point, phase separation occurred after about two
wave vectors as compared to the turbidity. The dynamics offours. All measurements are performed on a sample on the
concentration fluctuations pertaining to these larger wavdlilution line that intersects the critical point. The distance

vectors are fast compared to small wave vectors. from the critical point is varied by gently evaporating or
adding solvent.

IIl. EXPERIMENT
B. EXPERIMENTAL SETUPS

A. Colloidal system The important parameter that characterizes the distance

The system used in this study consists of colloidal silicafrom the critical point, which is also an important input when
particles grafted with stearyl alcohol. The solvent is cyclo-comparing with theory, is the correlation length. When per-
hexane. Polydimethylsiloxan€PDMS) is added to induce forming a dichroism experiment, one could measure the con-
depletion attractions between the colloidal particles that giveentration of the sample, and from that, derive the correlation
rise to a gas-liquid critical point. The silica particles werelength, after the relation between the correlation length and
synthesized by the method of ®&r[16]. The spheres have the concentration has been established independently. The
an average diameter of 102 nm, as determined by dynami&levant differences in concentration, however, are so small
light scattering. The polydispersity, determined by transmisthat the determination of the concentration would be far too
sion electron microscopy, was found to be around 16%. Thénaccurate. Before and after each dichroism experiment, we
specific masgp of the silica particles, that relates the volume therefore performed a turbidity measurement on the quies-
fraction ® to the mass concentratianas® =c/p, was de- cent, unsheared sample, and determined the correlation
termined by Ubbelohde measurements, using Einstein’s forlength from the turbidity. To this end, we first have to estab-
mula »,=1+2.5P, which relates the shear viscosity to  lish the relation between the turbidity and the correlation
the volume fractiond of spheres. The specific magsvas  length. The experimental setup for this purpose is sketched
found to be 1.863 g/ml. The polymer PDMS that we used haén Fig. 5. The laser beam first passes two polaroid’s in order
a molar weight of 204 kg/mol. When dissolved in cyclohex-to be able to adjust the intensity of the beam. A nonpolariz-
ane, the spherical coils have a radius of gyration of arounihg beam splitter is used to determine the intensity of the
26 nm(at 25°Q. incident light with detector 1. The sample is immersed in a

To determine the phase diagram, a number of samplethermostating optical matching bath, to prevent scattering
with various, fixed PDMS to silica concentration ratios werefrom optical imperfections of the cuvette. The scattered light
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FIG. 5. Experimental setup for the determination of the relation = 554 x 760
between the turbidity and the correlation length. 41 ° 87 v 144
T T 1 T M T X 10‘2
0.5 10 15 2.0 25
intensity is measured by means of a photodiode array camere K [m7]

that is positioned in the focal plane of the optical bath. The
scattering angle range is 2—6 degrees. The intensity of the
beam that passed the sample is reflected by a mirror to de-
tector 2. A circular pinhole with a diameter of 0.3 mm haspendent and renders Orstein-Zernike plots linear. Except for
been used to prevent detection of scattered light by detectdhe largest correlation lengths shown in Fig. 6, the curves
2. The ratio of the intensities of the detectors 1 and 2 is thetave the same slope. The slope is proportiong3oso that
recorded for an experiment with the colloidal sample andhis parameter is seen to be well behaved near the critical
only solvent, respectively. These two intensity ratios deterpoint, as expected.
mine the turbidity of the colloidal sample through Lambert- ~We found that on approach of the critical point, the time
Beer's law Eq.(2). The path length of the cuvettes is typi- needed to render the scattered intensity time independent in-
cally 0.2 cm. creases. This is a manifestation of the critical slowing down
The dichroism setup is based on the design by Fulleof the dynamics of concentration fluctuations. For very large
[17,18. The setup was adjusted to be able to also measureorrelation lengthgmore than about 2500 nmve observed
the turbidity of the system, for reasons discussed above. la decrease of the measured correlation length over longer
our setup, the rotating 1/2 waveplatelet is mounted on a derperiods of time. This is illustrated in Fig. 7. Right after ho-
tist drill, which accomplishes a rotational speed of about 4mogenization of the sample, a fit to the Ornstein-Zernike
kHz. The shear cell is a homemade optical couette cell wittstructure factor, including the noncritical background contri-
a gapwidth of 2.47 mm, which is placed in a thermostatingbution, yields a correlation length of 424 nm. A measure-
optically matching bath. ment after some hours yields a correlation length of 5011
Before an actual dichroism experiment was started, the@m. This value then decreases over a perib8 o to 1375
colloid-polymer mixture was left to equilibrate for at least 30 nm. The reason for this decrease in correlation length is
min in the thermostated, optical bath. The turbidity is mea-probably that density inhomogeneities are so long lived, as a
sured before and after each dichroism experiment in order teesult of severe critical slowing down, that sedimentation
verify that evaporation of solvent during the experiment isoccurs. The system then develops large scale concentration
insignificant. It turned out that evaporation is insignificantgradients. The concentration of the part of the system from
over periods of several hours. which scattered intensities are measured differs from the
overall concentration, giving rise to a smaller measured cor-

FIG. 6. Reciprocal scattered intensity versds

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Correlation length dependence of turbidity

Figure 6 shows the reciprocal intensity versus the wave-
vector k squared, for a sample with the critical colloid to 12
polymer ratio, for various distances from the critical point
(see the dilution line in Fig. 4 The solid lines in this figure
are curves fitted to Ed4), where the noncritical background
contribution to the intensity is used as an additional fitting
parameter. Relatively far from the critical point, the curves
are virtually straight lines, but closer to the critical point, 64
curves deviate from a straight line. The reason for this is the
large variation of theelative contribution of the noncritical
background intensity: for small wave vectors, where the T - T - T 10"
critical scattered intensity is very large, the relative contribu- 0.0 0.5 10 k21‘?m-2] 20 25
tion of the background intensity is much smaller than for the
larger wave vectors. Further away from the critical point, the FIG. 7. Time dependence of the reciprocal scattered intensity as
relative background contribution becomes wavevector inde-a function ofk?.

% ™ 8 hours after shaking

5 hours after shaking 1

1/l [arbitrary units]

apparent correlation length & [nm]
® 424 N
= 5011
< 1375
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FIG. 8. Relation between the correlation length and the turbidity. v[s]

relation length. Measurements are therefore only reliable in F'G: 9. Dichroism as a function of the shear rate for various

case the correlation length is smaller than about 2500 nm. corre!atlor! lengths, as |nd|cat§d in the figure. The lowest curve is
Figure 8 shows the correlation length versus the turbidity.the dichroism of the sample without polymer.

The smallest correlation length of 250 nm is about twice as

large as the range of the pair-interaction potential, which iglichroism can therefore not be attributed to a shear induced

equal to the sum of the diameters of the colloidal particleshift of the critical point(see also the discussion at the end of

and the polymer diameter of gyratidr-150 nmj. The solid  in Sec. I Q.

curve in Fig. 8 is a fit to Eq(6). The solid curve will be used

to determine the correlation length from turbidity measure- 1. Dichroism in the mean field region

ments. The shear rate dependence of dichroism within the mean-

field region is plotted in the insert in Fig. 11. Within the

mean-field region, dichroism is monotonously increasing
Measurements were done on a sample with the criticalith increasing shear rate. The experiments for small corre-

concentration ratio of colloid to polymer. The distance to thelation lengths(<300 nn) suggest that the slope of the di-

critical point is varied by the evaporation or the addition of chroism against the shear rate is 0 for small shear rates. This

solvent. The actual distance to the critical point in terms ofis in accordance with the theoretical resultn”— 42 for

the correlation lengtlg is obtained from transmission mea- small shear rates.

surements and Fig. 8. A transmission measurement was done The theoretical result Eq9) implies thatAn"/\/¥ is a

before and after the dichroism measurements were pefynction of the shear rate and the correlation length only

formed, in order to ensure that no significant evaporatioqh 1 ; N
’ . . ) rough the combinatio®¢™. Hence, in a plot ofAn"/+/
occurred during the dichroism measurement. g e P Y

Dichroism measurement results in the shear rate range of

B. Dichroism under stationary shear flow

0.1 to 34.7 §* are plotted in Fig. 9 for various correlation X10*
lengths. The lowest curv@ashed lingis the dichroism for a [— ' ' ' '
sample with silica particles only, without polym&DMS). mean field |

This curve relates to noncritical contributions to the dichro- 34
ism. As can be seen, these noncritical contributions are neg-
ligibly small as compared to critical contributions.

As can be seen from this figure, dichroism increases with
an increasing correlation length up to a certain length after
which dichroism decreases. This is made more explicit in
Fig. 10, where the dichroism at the maximum applied shear
rate (34.7 s'%) is plotted against the correlation length. The 11
mean-field theory described in section II.D predicts a mo-
notonous increase of the dichroism with the correlation :
length. We therefore conclude that the cross-over from mean o+ : _
field to non-mean field behavior occurs at a correlation
length of about 750 nm.

When comparing to the theory described in Sec. 11D, we
therefore have to restrict to correlation lengths less than 750 FIG. 10. Dichroism aty=34.7 s versus correlation length.
nm. Note that since, in Fig. 10, the shear rate is a constanthe vertical dotted line indicates where the crossover from mean-
the location of the critical point is fixed. The decrease offield to nonmean-field behavior occurs.

An” ] beyond mean field

T T T T v T M T T T
0 500 1000 1500 2000 2500
correlation length & [nm]
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FIG. 11. Scaling of the experimental data. The solid line corre- X 10°
sponds to the theoretical resiiEgs. (15) and (19)]. Inset shows . : . . . . .
dichroism measurements in the mean-field region. The dashed line  1-67(b) . --a- - dichroism |
is the dichroism for a sample without polymer. I b.b --0- - intensity 5
1.2 7o 18
against y&* all experimental curves should collapse onto an" 9 2900090000 o0, f<£’.
each other. To within experimental errors, this is indeed seer ;g | ¢'p 2700000005 400000000 )
to be the case in Fig. 11. In addition, the functional form of & . =
the dichroism scaling function E¢l5), as depicted in Fig. 3, a i : g
can be compared to the experimental master curve in Fig. 11 041 P g c
as follows. The dressed Peclet numheis directly propor- ; L § %
tional to y£*. The proportionality constant betweenand 0.0 ooced = e T
y&* can be found by rescaling the horizontal axis in Fig. 11, i il o
S0 as to obtain the best agreement between the theoretic: 0 10 20 30 40 50 60 70
scaling function and the experimental master curve. The ver- time [s]

tical a).(ls must be resca.led smgltaneously. As can b.e seen FIG. 12. (a) Relaxation curves for dichroism and the transmitted
from Fig. 11, the theoretical scaling function agrees with the . . .

. L . intensity for a correlation length of 600 nm. The solid curves are
experimental master curve to within experimental errors. Th?heoretical mean-field predictions based on E@) and (22)
rescaling factor for the horizontal axis is equal y

1 . i ) to Shear flow is imposed at 7.5 s and is turned off at 15 s. @lpt
(28%Dg) ", according to Eq(12), while the rescaling fac- shows the relaxation of dichroism and transmitted intensity for the

tor for ~the vertical axis is equal 10 peyond mean-field regiortE 1517 nm). The inset ifb) shows the
C R{/2D g/ (koRy) *ko(BX/Ry) %2 according to Eqs(13)  extremely long relaxation time faf=1280 nm.
and (19). The scaling factors are found to be equal to 3.3
X10?sm* and 2.0<10 8sY2 respectively. From these structure in directions perpendicular to the flow direction
numbers it follows that, BE/R@,%O.M and (,—n¢) [see remark just below E¢7) and Fig. 4. What is observed
~0.025, wheren, and n; are the refractive index of the beyond mean field is that the intensity of this bright streak is
colloidal particles and the solvent, respectively. The formeriminished when shear flow is applied, more so on closer
value is in accordance with a crude theoretical estimat@pproach of the critical poiri21]. This breakdown of micro-
(B2/R?~0.1) [8,19], but differs by a factor of about ten structure in directions perpendicular to the flow direction
with results obtained from earlier turbidity measurements orfenders the structure factor more isotropic, leading to smaller
a similar colloidal systenfi20]. The refractive index differ- dichroism. This effect of shear flow on the microstructure is
ence of 0.025 is in good agreement with the value of 0.0dost when the equation of motion for the total-correlation
that is common for silica spheres prepared by the method dtinction is linearizedas discussed in Sec. I)CBeyond the
Stdber, in cyclohexane. mean-field region one should consider nonlinear equations of
motion. As far as we are aware, such nonlinear equations

2. Dichroism beyond mean field have not been analyzed yet.

Dichroism as a function of the shear rate for correlation
lengths larger than 750 nm, corresponding to distances to the
critical point that are beyond mean field, are plotted in Fig. 9 Relaxation behavior was studied for correlation lengths of
(filled symbolg. Contrary to its mean-field behavior, shear 600 nm(mean field and 1517 nnibeyond mean field Each
induced dichroism decreases on approach of the criticaheasurement was started at time0 and then shear was
point. In the mean-field region there is a bright streak in theapplied att=7.5s, and turned off at=15s. Relaxation
scattering pattern, corresponding to the unaffected microeurves for dichroism and turbidity are given in Fig. 12. Fig-

C. Relaxation of Dichroism and Turbidity
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ure 12(a) shows relaxation curves for a correlation length ofbeyond mean field: for a given shear rate, dichroism first
600 nm, within the mean-field region. As can be seen, théncreases on approach of the critical point in the mean-field
shear induced dichroism relaxes within seconds, while theegion, but then decreases in the beyond mean-field region.
transmitted intensityand hence, the turbidityelaxes over a The decreasing dichroism on approach of the critical point
much larger time interval. As can be seen from Figtbl2  for the beyond mean-field region is probably due to the
where relaxation curves for a correlation length of 1517 nmyreakdown of the structure factor in directions perpendicular
are plotted, beyond the mean-field region, relaxation of diyy the flow direction. This phenomenon is due to nonlinear
chroism remains fast. Relaxation times of theT Furbldity, hOW-terms in the equation of motion for the structure factor.
ever, become larger on approach of the critical point. Therhege nonlinear terms can be neglected in the mean-field
insert in Fig. 12b) illustrates the extremely long relaxation oion S0 far, nonlinear equations of motion of the structure
time of the turbidity on very cllose.approach of the critic_ql factor have n’ot been analyzed. In the mean-field region,
point (- 1250m).Herce,dtrosm doco ol show it L. Coions of mojon o h i oroaon ncir
' : gan be linearized, theory predicts scaling of datafaf/+/y

sample in the beyond mean-field region did not reach th . 4 T . .
stationary state at the time the shear rate is switched off, When plotted againsy¢™. This is confirmed by the experi-

These observed differences in relaxation behavior of diments(see Fig. 11 Values for82/R{ andn,—n;, as found
chroism and turbidity are in agreement with the mean-fieldy comparing the experimentally obtained master curve and
theoretical predictions, as discussed in Sec. [s&e Figure the theoretically predicted scaling function, are in accordance
12(8)]. The integrands in Eq€23) and(24) for dichroism are  With a theoretical estimate fo8%/R{ [8,19] and indepen-
more sensitive to structure at larger wave vectbecause of dent experimental results for,—n; (see Sec. IVB L Shear
the factork®) as compared to the integrand in E§1) for ~ rate dependent turbidity measurements close to the critical
the turbidity (a factor K). Since the dynamics of density point on a similar colloidal systerf20] rendered an unex-
waves with larger wave vectors is faster than for smallepectedly high value of 3.6 fqﬁ‘E/R\z,. The reason for this is
wave vectors, this results in a faster relaxation of dichroismmot clear.
as compared to turbidity. The slower relaxation of the tur- Relaxation experiments after cessation of the shear flow,
bidity for larger correlation lengths is due to the smallershow that dichroism does not exhibit experimentally relevant
value of the effective diffusion coefficiefisee Eq.(8)] for  critical slowing down: relaxation times are found of the order
small wave vectors. The solid lines in Fig.(&Rare theoret- of a second, right up to the critical point. This is in contrast
ical relaxation curves, based on the equations in Sec. IIBo the turbidity, the relaxation time of which is found to
The dichroism relaxation curve is calculated from the con-diverge on approach of the critical point. This different dy-
stants derived from the scaling analysis of the stationary dinamical behavior of dichroism and turbidity is in accordance
chroism measurements in Sec. IVB 1, except that the conwith the mean-field theory. Formally, dichroism is more sen-
stant (283 D,) " is chosen as 2:810 s instead of 2.0  sitive to the dynamics of density waves with larger wave
x 1078 sY2 in order to obtain agreement for the initial value vectors[due to the factoK? in the integrand in Eqg23) and
of An” (for a single dichroism measurement this lies within (24)] as compared to the turbidita factorK in the integrand
experimental errojs The theoretical intensity relaxation in Eq.(21)). Since the dynamics of density waves are faster
curve is obtained from the constants obtained in Sec. IV B 1for larger wave vectors, this explains the relatively fast re-
where the initial value of the intensity was an adjustablelaxation of dichroism. It is surprising however, that even
parametefsince we did not measure the incident intensity invery close to the critical point, the dichroism relaxation dy-
this experiment and the small experimental offset, due to namics remains fast.
optical imperfections of the shear cell, was added to the cal-
culated intensity. The important thing to note here is that the
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